

Getting Started with Recursion

Logistics: PollEV

Lecture Participation
● Starting next Monday, we will be using the

website PollEV to ask questions in lecture.
● If you provide thoughtful answers to those

questions, you’ll get participation credit for the
day.
● “Thoughtful” doesn’t mean “correct.” It’s okay to

have a wrong answer!
● If you can’t attend lectures, or would prefer not

to have participation count toward your grade,
you can opt out and shift the weight to your final
exam in Week 4.

Lecture Participation
● We’ll use today to dry-run PollEV questions.
● Let’s start with the following warm-up question:

● A few of my own recommendations:
● Nonfiction: “Uncommon Carriers” by John McPhee.
● Short stories: “Interpreter of Maladies” by Jhumpa Lahiri.
● Fiction: “American Pastoral” by Philip Roth.

Make a book recommendation!

Answer at https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Outline for Today
● Recursive Functions

● A new problem-solving perspective.
● Recursion on Strings

● Featuring cute animals!

Thinking Recursively

Factorials!
● The number n factorial, denoted n!, is defined as

n × (n – 1) × … × 3 × 2 × 1
● Here’s some examples!

● 3! = 3 × 2 × 1 = 6.
● 4! = 4 × 3 × 2 × 1 = 24.
● 5! = 5 × 4 × 3 × 2 × 1 = 120.
● 0! = 1. (by definition!)

● Factorials show up in unexpected places! We’ll see
one later this quarter when we talk about sorting
algorithms!

● Let’s implement a function to compute factorials!

Computing Factorials

5! = 4!5 ×
4! = 4 3!×
3! = 2!3 ×
2! = 1!2 ×
1! = 0!1 ×
0! = 1

Another View of Factorials

n! = {1 if n=0
n × (n−1)! otherwise

Me!

Alexes Compute Factorials

Alex
#3

Alex
#2

Alex
#1

Alex
#0

Me!

Alexes Compute Factorials

There are multiple people,
each named Alex, but they’re

not the same person.

Each Alex is tasked with
computing a different number

factorial.

Each Alex gives their answer
back to the previous person.

Eventually I get the answer!

Thinking Recursively
● Solving a problem with recursion

requires two steps.
● First, determine how to solve the

problem for simple cases.
● This is called the base case.

● Second, determine how to break down
larger cases into smaller instances.
● This is called the recursive step.

Summing Up Digits
● On Wednesday, we wrote this function to

sum up the digits of a nonnegative integer:
 int sumOfDigitsOf(int n) {
 int result = 0;

 while (n > 0) {
 result += (n % 10);
 n /= 10;
 }

 return result;

 }

● Let’s rewrite this function recursively!

Summing Up Digits
● To write a recursive function, we need to

think of a base case and a recursive case.
● The base case produces answers when the

input is sufficiently simple.
● The recursive case takes more complex

inputs and simplifies them, taking them closer
to the base case.

● What’s a reasonable base case for our sum of
digits function?

Summing Up Digits

1 2 5 8

1 2 5 8

sumOfDigitsOf(n)
is equal to...

sumOfDigitsOf(n / 10) + (n % 10)

Thinking Recursively
if (The problem is very simple) {
 Directly solve the problem.
 Return the solution.
} else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.
 Solve each of those smaller problems.
 Combine the results to get the overall
 solution.
 Return the overall solution.
}

These simple cases
are called base

cases.

These are the
recursive cases.

Time-Out for Announcements!

Outdoor Activities Guide
● If case you’re looking for things to do in the area this

weekend, I’ve posted an Outdoor Activities Guide on the
course website.

● It’s a mix of places to go and places to get a bite to eat.
● Some highlights:

● See the whole Santa Clara Valley and beyond from the
observatory on Mt. Hamilton.

● Walk among giant redwood trees and pick your own bay leaves.
● Catch a gorgeous sunset view of San Francisco from an

artificial island covered in guerrilla artwork.
● Get cheap, delicious food from restaurants tucked into

unassuming strip malls.
● Enjoy!

Section Signups
● Section signups are open!
● Sign up for section at

https://cs198.stanford.edu/cs198/auth/default.aspx
by Sunday at 5PM.

● Reminders:
● We don’t look at Axess when determining discussion sections.

You still need to sign up here even if you have a section on
Axess.

● Courses like CS106L, CS106BACE, and CS106S are taken in
addition to discussion sections rather than in place of sections.

● If you miss the Sunday 5PM deadline, signups reopen on
Tuesday on a first-come-first-served basis.

● Sections start next week.

https://cs198.stanford.edu/cs198/auth/default.aspx

Assignment 1
● Assignment 0 was due today at 1:00PM Pacific.
● Assignment 1: Welcome to C++ goes out today.

It’s due on Friday, January 17th at 1:00PM Pacific.
● Play around with C++ and the Stanford libraries!
● Get some practice with recursion!
● Explore the debugger!
● See some pretty pictures! 😃

● We recommend making slow and steady progress
on this assignment throughout the course of the
week. There’s a recommended timetable at the
top of the assignment description.

Getting Help

Civil rights lawyer;
cofounded she++

Wrote the
textbook

Saved
taxpayers
$100M+

CTO

CS198
Coordinator

Lawyer for
low-income

families

Software
engineer

Founded
a company

Director
of Product

Product
Manager

Karate
Instructor

Me!
Founded

a company

Getting Help
● LaIR Hours

● Sunday – Thursday, 7PM – 11PM Pacific.
● Starts Sunday.
● Runs in the Durand building 3rd floor.

● Jonathan’s and Keith’s Office Hours
● Check the website for times and places.

One More Unto the Breach!

Recursion and Strings

Thinking Recursively

I B E X

I B E X
str[0] str.substr(1)

How do you reverse a string?
?gnirts a esrever uoy od woH

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

reverseOf("") = ""

Thinking Recursively
if (The problem is very simple) {
 Directly solve the problem.
 Return the solution.
} else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.
 Solve each of those smaller problems.
 Combine the results to get the overall
 solution.
 Return the overall solution.
}

These simple cases
are called base

cases.

These are the
recursive cases.

Recap from Today
● Recursion works by identifying

● one or more base cases, simple cases that
can be solved directly, and

● one or more recursive cases, where a
larger problem is turned into a smaller one.

● Recursion is everywhere! And you can
use it on strings.

Your Action Items
● Sign Up for a Discussion Section

● Signups close this Sunday. Use the link we’ve
shared rather than signing up on Axess.

● Read Chapter 7.
● This chapter is all about recursion.

● Start Working on Assignment 1.
● Aim to complete the Debugger Warmups by

Monday and start working on Fire.

Next Time
● Reference Parameters

● On master copies and xeroxes.
● Vector

● Representing sequences.
● Recursion on Vectors

● Of course. 😃

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

